Trinuclear Complexes Containing Incomplete Cubane Co^{III}₃O₄ Cores. Structures of the Isomers of the *N*-(2-Pyridylmethyl)glycinato Complex

Tomoharu Ama,* Toshiaki Yonemura, and Masayoshi Yamaguchi

Department of Materials Science, Faculty of Science, Kochi University, 2-5-1 Akebono-cho, Kochi 780-8520

Received January 13, 2006; E-mail: tomama@cc.kochi-u.ac.jp

Two isomers of N-(2-pyridylmethyl)glycinatocobalt(III) complexes containing incomplete cubane Co_3O_4 cores, $[Co_3(pg)_3(\mu_3\text{-O})(\mu\text{-OH})_3]^+$, were isolated and their structures were determined by the X-ray diffraction method. While the trinuclear structure of one of the two isomers was stabilized by three inter-ligand N–H···O hydrogen bonds, that of the other was stabilized by two N–H···O hydrogen bonds and one inter-ligand pyridyl–pyridyl stacking interaction.

In the previous works, we have reported that some [Co₃-(L)₃(μ_3 -O)(μ -OH)₃]-type complexes that have incomplete cubane Co₃O₄ cores could be prepared by the dehydro-condensation of [Co(L)(H₂O)₃]-type complexes in basic aqueous solutions.^{1–5} In the [Co₃(edma)₃(μ_3 -O)(μ -OH)₃]⁺ (Hedma: *N*-(aminoethyl)glycine) complex ion, thirty-eight geometrical isomers are anticipated; however, only four isomers were isolated by the condensation of [Co(edma)(OH₂)₃]²⁺. As each of the four-isolated isomers has three N–H···O inter-ligand (intramolecular) hydrogen bonds, it was pointed out that the three attractive inter-ligand interactions such as the three interligand hydrogen bonds are one of the important factors in stabilizing the incomplete cubane structures.⁴

N-(2-Pyridylmethyl)glycine (Hpg) is the same type of N–N–O tridentate as edma. However, pg is distinct from edma in the following two points: (1) A pyridyl-N in pg cannot form hydrogen bonds with carboxyl-O, while amino-N in edma can; (2) a pyridyl-ring in a $[Co_3(pg)_3(\mu_3\text{-O})(\mu\text{-OH})_3]^+$ ion contributes to stabilize the incomplete cubane structure by the attractive interaction caused by the stacking with the neighboring pyridyl-ring in the complex ion (pyridyl-pyridyl stacking), while the N–H \leftrightarrow H–N repulsive interaction destabilizes the incomplete cubane structure in the corresponding isomer of $[Co_3(\text{edma})_3(\mu_3\text{-O})(\mu\text{-OH})_3]^+$. Accordingly, it is expected that some isomers that were not isolated in $[Co_3(\text{edma})_3(\mu_3\text{-O})(\mu\text{-OH})_3]^+$, even though some isomers isolated in the former may not be isolated in the latter.

As described in the experimental section, we have succeeded in isolating two of the thirty-eight geometrical isomers of

 $[\text{Co}_3(\text{pg})_3(\mu_3\text{-O})(\mu\text{-OH})_3]^+$ and determining their structures by the single-crystal X-ray diffraction method. In the following, the characteristics and the structures of the isolated isomers will be described.

The ORTEP drawing of the $[Co_3(pg)_3(\mu_3-O)(\mu-OH)_3]^+$ ion in the isomer 2 is illustrated in Fig. 1. The complex ion contains an incomplete cubane Co₃O₄ core and each cobalt atom in the cation is octahedrally surrounded by the amino-N, pyridyl-N, carboxyl-O in the coordinated pg, two μ -O, and one μ_3 -O. In the isomer 2, the three pyridyl-N occupy a position trans to μ_3 -O, and there is a C_3 -axis on the central μ_3 -O perpendicular to the Co-Co-Co plane. The Co- μ_3 -O and Co- μ -O distances are 1.89 and 1.91 Å (av.), respectively; these values agree well with the corresponding ones in the [Co₃- $(edma)_3(\mu_3-O)(\mu-OH)_3$]⁺ ion. The four-membered ring, μ_3 -O-Co- μ -O-Co', is approximately planar. However, the three four-membered rings are not regular squares; the Co-O-Co angles are $96.4-97.5^{\circ}$ and O-Co-O ones are $82.9-83.1^{\circ}$. These values also agree with the corresponding ones in the [Co₃- $(edma)_3(\mu_3-O)(\mu-OH)_3$]⁺ isomers. The bond distances and angles in the coordinated pg ligands are similar to those of $[Co_4(pg)_4(\mu_3-O)_4].^6$

Replacement of the three 2-pyridylmethyl groups of three pg's in the isomer **2** with three aminoethyl groups gives the compounds corresponding to the **T3** isomer^{3,4} of [Co₃(edma)₃- $(\mu_3$ -O)(μ -OH)₃]⁺, which has already been reported. In the isomer **2**, there are three inter-ligand (intra-molecular) N–H···O hydrogen bonds (N1*–O3 etc.) such as are observed in the **T3** isomer. These three attractive interactions help to stabilize the incomplete cubane Co₃O₄ structure, as described in the references.⁴

The 13 C{ 1 H} NMR spectrum of the complex shows only 8 signals (57.57, 60.93, 123.69, 125.68, 141.44, 149.89, 163.30, and 185.64 ppm) in a D₂O solution, suggesting that the ion retains C_3 symmetry in the D₂O solution (the three pg ligands in the same $[Co_3(pg)_3(\mu_3-O)(\mu-OH)_3]^+$ ion are equivalent in the D₂O solution).

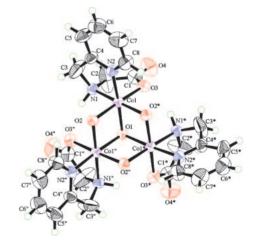


Fig. 1. ORTEP drawing of $[Co_3(pg)_3(\mu_3-O)(\mu-OH)_3]^+$ in isomer **2**. Selected bond distances (Å) and angles (°) are as follows: Co1–O1, 1.893(2); Co1–O2, 1.905(3); Co1–O2*, 1.912(3); Co1–O3, 1.900(3); Co1–N1, 1.944(4); Co1–N2, 1.922(4); O1–Co1–O2, 83.1(1); O1–Co1–O2*, 82.9(1); Co1–O1–Co1*, 97.5(2); Co1–O2–Co1", 96.4(1).

There are two crystallographically independent $[\text{Co}_3(\text{pg})_3-(\mu_3\text{-O})(\mu\text{-OH})_3]^+$ fragments whose geometrical structures resemble each other in the unit cell of the isomer 1. We describe only the fragment containing Co1–Co3 atoms in the following (Fig. 2); however, similar discussion is possible for the other fragments containing Co4–Co6 atoms (see Supporting Information).

It is clear from Fig. 2 that the coordinations around cobalt(III) atoms are roughly octahedral and that this complex contains an incomplete cubane Co_3O_4 core. That is, the three Co_4 -O distances are in the range 1.88–1.89 Å, showing that the O1 atom bridges three Co atoms. The Co_4 -O distances are in the range 1.89–1.91 Å. These Co_4 -O values agree well with the corresponding ones in the $[\text{Co}_3(\text{edma})_3(\mu_3-\text{O})(\mu-\text{OH})_3]^+$ isomers. The three four-membered rings, O1–Co1–O2–Co2, O1–Co2–O3–Co3, and O1–Co3–O4–Co1, are approximately planar and the Co–O–Co and O–Co–O angles are greater than 90° and smaller than 90°, respectively. These values also agree with the corresponding ones in the **T1–T3** isomers^{1,3} of $[\text{Co}_3-(\text{edma})_3(\mu_3-\text{O})(\mu-\text{OH})_3]^+$.

There are three inter-ligand attractive interactions in the $[\text{Co}_3(\text{pg})_3(\mu_3\text{-O})(\mu\text{-OH})_3]^+$ fragment appearing in Fig. 2; there are two inter-ligand (intra-molecular) N–H···O hydrogen bonds (N1–O9 and N3–O5) such as those observed in the isomer **2** of the $[\text{Co}_3(\text{pg})_3(\mu_3\text{-O})(\mu\text{-OH})_3]^+$ ion, and one interligand pyridyl–pyridyl stacking interaction. These three attractive interactions help to stabilize the incomplete cubane Co_3O_4 structure, as described in the references.⁴ On the other hand,

Fig. 2. ORTEP drawing of one of the two $[\text{Co}_3(\text{pg})_3-(\mu_3\text{-O})(\mu\text{-OH})_3]^+$ fragments in isomer 1. Selected bond distances (Å) and angles (°) are as follows: Co1–O1, 1.890(3); Co2–O1, 1.881(3); Co3–O1, 1.884(3); Co1–O2, 1.912(3); Co1–O4, 1.905(3); Co2–O2, 1.911(3); Co2–O3, 1.915(3); Co3–O3, 1.913(3); Co3–O4, 1.899(3); Co1–O5, 1.902(3); Co1–N1, 1.938(4); Co1–N2, 1.942(4); Co2–O7, 1.936(3); Co2–N3, 1.946(4); Co2–N4, 1.928(4); Co3–O9, 1.913(3); Co3–N5, 1.977(4); Co3–N6, 1.925(4); O1–Co1–O2, 83.8(1); O1–Co1–O4, 84.2(1); O1–Co2–O2, 84.1(1); O1–Co2–O3, 82.7(1); O1–Co3–O3, 82.7(1); O1–Co3–O4, 84.6(1); Co1–O1–Co2, 96.8(1); Co1–O1–Co3, 95.9(1); Co2–O1–Co3, 98.3(1); Co1–O2–Co2, 95.0(1); Co2–O3–Co3, 96.2(1); Co1–O4–Co3, 94.9(2).

the corresponding isomer of $[\text{Co}_3(\text{edma})_3(\mu_3\text{-O})(\mu\text{-OH})_3]^+$, which is given by replacing the three 2-pyridylmethyl groups on **2** with three aminoethyl groups, will have two inter-ligand N–H···O hydrogen bonds and one repulsive NH₂ \leftrightarrow H₂N interaction (instead of one attractive pyridyl–pyridyl stacking interaction in $[\text{Co}_3(\text{pg})_3(\mu_3\text{-O})(\mu\text{-OH})_3]^+$). Accordingly, the unstabilized isomer of $[\text{Co}_3(\text{edma})_3(\mu_3\text{-O})(\mu\text{-OH})_3]$ corresponding to the isomers **1** of $[\text{Co}_3(\text{pg})_3(\mu_3\text{-O})(\mu\text{-OH})_3]$ has not been isolated yet, while the isomer of $[\text{Co}_3(\text{edma})_3(\mu_3\text{-O})(\mu\text{-OH})_3]^+$ (T3)^{3,4} corresponding to the isomer **2** of $[\text{Co}_3(\text{pg})_3(\mu_3\text{-O})(\mu\text{-OH})_3]$, which has three inter-ligand N–H···O hydrogen bonds, has been isolated.

The pyridyl-ring on Co1, which does not participate in the above-mentioned intra-molecular pyridyl-pyridyl stacking, forms another inter-molecular pyridyl-pyridyl stacking interaction with that on Co4, which belongs to the neighboring $[\text{Co}_3(\text{pg})_3(\mu_3\text{-O})(\mu\text{-OH})_3]^+$ fragment (see Supporting Information).

The absorption spectrum of 1 in an aqueous solution is illustrated in Fig. 3, together with that in a 0.1 mol dm⁻³ HCl solution. The spectrum of 1 showed a characteristic absorption band (shoulder) arising from the $\text{Co}(\mu\text{-OH})(\mu_3\text{-O})\text{Co}$ moiety at 320–380 nm in the aqueous solution.³ The aqueous solution of 1 showed a reversible absorption spectral change with pH: when the spectrum was measured in 0.1 mol dm⁻³ HCl, the ε value decreased around the 350 nm region and increased around the 300 nm region (Fig. 3), which seems to result from the protonation on μ_3 -O in the Co_3O_4 core.³ The UV absorption spectra of the isomer 2 are very similar to those of the isomer 1 in both aqueous and 0.1 mol dm⁻³ HCl solutions.

In summary, two (isomers 1 and 2) of the thirty-eight isomers of $[\text{Co}_3(\text{pg})_3(\mu_3\text{-O})(\mu\text{-OH})_3]^+$ were isolated and their structures were determined. The isomer 1 has three attractive inter-ligand interactions (one pyridyl-pyridyl stacking and two N-H···O hydrogen bonds) and the isomer 2 has three inter-ligand N-H···O hydrogen bonds. In the isomer 2, the corresponding isomer of $[\text{Co}_3(\text{edma})_3(\mu_3\text{-O})(\mu\text{-OH})_3]^+$ (T3)^{3,4} has been isolated. However, in the isomer 1, the corresponding isomer of edma, which has one inter-ligand repulsive NH₂ \leftrightarrow H₂N interaction, has not been isolated yet. The present

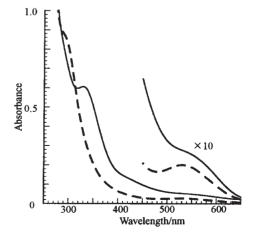


Fig. 3. UV–vis absorption spectra of isomer 1 ([complex] = $7.31 \times 10^{-4} \text{ mol dm}^{-3}$; cell length: 1 cm); (—): in H₂O, and (---): in 0.1 mol dm⁻³ HCl solution.

results suggest that isomers that have three attractive interligand interactions are preferentially formed during the dehydro-condensation of $[\text{Co}(\text{pg})(\text{H}_2\text{O})_3]^+$ to $[\text{Co}_3(\text{pg})_3(\mu_3\text{-O})-(\mu\text{-OH})_3]^+$ in a basic aqueous solution.

Experimental

Preparation of the Complexes. To a solution containing 2.4 g of CoCl₂ • 6H₂O in 50 cm³ of water was added an aqueous solution containing 1.94 g of pgOEt (ethyl N-(2-pyridylmethyl)glycinate: purchased from Tokyo Kasei Kogyo Co., Ltd). To this mixture was added a 2 mol dm⁻³ KOH aqueous solution until the precipitation of Co(OH)2 appeared. Air was bubbled through the solution for approximately 8 h, while the pH was adjusted to about 8. The solution was heated for an additional 1 h in a water bath at 60 °C, and then filtered. The filtrate was poured into an SP-Sephadex C-25 column (K⁺ form, ϕ 9.0 cm × 15 cm) and the column was swept with water in order to discard anionic and neutral complexes. Having been developed with a 0.1 mol dm⁻³ KCl aqueous solution, the adsorbed brown band was transferred to another SP-Sephadex C-25 column (K⁺ form, ϕ 4.7 cm × 90 cm). By further development with a 0.1 mol dm⁻³ KCl solution, this band separated into four bands. Each eluate from the four bands was concentrated to a small volume with a rotary evaporator, followed by a large amount of methanol being added to the solution, and then the deposited KCl was filtered off. A crude complex was obtained by the addition of diethyl ether to the methanolic solution, which was recrystallized from warm water. From the second and forth elution, we obtained the isomers 1 and 2 as chloride crystals, which are both complexes with incomplete cubane Co₃O₄ cores. The complex isolated from the first elution was dinuclear cobalt(III) complex and that from the third was mononuclear cobalt(III) complex. Anal. Calcd for C₂₄H₄₀N₆O₁₅Co₃Cl₁ (1: [Co₃- $(pg)_3(\mu_3-O)(\mu-OH)_3$ Cl·5H₂O): C, 33.33; H, 4.66; N, 9.72%. Found: C, 33.45; H, 4.74; N, 9.82%. Calcd for C₂₄H₃₉N₆O_{14.5}- Co_3Cl_1 (2: $[Co_3(pg)_3(\mu_3-O)(\mu-OH)_3]Cl\cdot 4.5H_2O$): C, 33.68; H, 4.59; N, 9.82%. Found: C, 33.49; H, 4.72; N, 9.60%.

X-ray Crystallography. Crystals of **1** and **2** suitable for X-ray diffraction study were obtained by recrystallization from water/acetone. Each was mounted on a glass needle. All measurements were made on a Rigaku AFC7S diffractometer with graphite monochromated Mo K α radiation. The structures of the isomers **1** and **2** were solved by direct methods and expanded using Fourier techniques. The non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included but not refined.

Crystal data for 1: $C_{24}H_{40}N_6O_{15}Co_3Cl$, fw 864.86, triclinic, space group $P\bar{1}(\#2)$, a=20.560(2), b=14.095(2), c=14.147(2) Å, $\alpha=60.647(9)^\circ$, $\beta=109.836(9)^\circ$, $\gamma=102.14(1)^\circ$, V=

3356.7(7) ų, Z=4, $D_{\rm calcd}=1.71\,{\rm g\,cm^{-3}}$, crystal dimensions: $0.4\times0.4\times0.4\,{\rm mm^3}$. Total reflections (Mo K α radiation, ω scan technique, $2\theta_{\rm max}=55.0^{\circ}$): 15407 unique diffrection with $I>0\sigma(I)$: 13851. Final R and R_w values, based on F^2 , were 0.092 and 0.152, respectively. Crystallographic data have been deposited with Cambridge Crystallographic Data Centre: Deposition number CCDC-290356 for the isomer 1. Copies of the data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving. html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge, CB2 1EZ, UK; Fax: +44 1223 336033; e-mail: deposit@ccdc.cam.ac.uk).

Crystal data for 2: $C_{24}H_{45}N_6O_{17.5}Co_3Cl$, fw 909.90, rhombohedral hexagonal, space group $R\bar{3}c$ (#167), a=19.39(1), c=32.38(2) Å, V=10538(13) Å³, Z=12, $D_{calcd}=1.72$ g cm⁻³, crystal dimensions: $0.5\times0.4\times0.2$ mm³. Total reflections (Mo K α radiation, ω –2 θ scan technique, $2\theta_{max}=55.0^{\circ}$): 5352 unique diffrection with $I>0\sigma(I)$: 4495. Final R and R_w values, based on F^2 , were 0.106 and 0.151, respectively. Crystallographic data have been deposited with Cambridge Crystallographic Data Centre: Deposition number CCDC-290357 for the isomer 2.

Supporting Information

An ORTEP drawing including one of the $[\text{Co}_3(\text{pg})_3(\mu_3\text{-O})(\mu-\text{OH})_3]^+$ fragments containing Co4–Co6 atoms in the isomer 1 and stacking of the pyridyl-ring (on Co4) on the fragment with the pyridyl-ring (on Co1) on the other $[\text{Co}_3(\text{pg})_3(\mu_3\text{-O})(\mu-\text{OH})_3]^+$ fragment containing Co1–Co3 atoms. This material is available free of charge on the web at http://www.csj.jp/journals/bcsj/.

References

- 1 T. Ama, J. Miyazaki, K. Hamada, K. Okamoto, T. Yonemura, H. Kawaguchi, T. Yasui, *Chem. Lett.* **1995**, 267.
- 2 T. Ama, K. Okamoto, T. Yonemura, H. Kawaguchi, Y. Ogasawara, T. Yasui, *Chem. Lett.* **1997**, 29.
- 3 T. Ama, M. Shiro, A. Takeuchi, T. Yonemura, H. Kawaguchi, T. Yasui, *Bull. Chem. Soc. Jpn.* **1997**, *70*, 2685.
- 4 T. Ama, M. M. Rashid, T. Yonemura, H. Kawaguchi, T. Yasui, Coord. Chem. Rev. 2000, 198, 101.
- 5 T. Ama, M. M. Rashid, A. K. Sarker, H. Miyakawa, T. Yonemura, H. Kawaguchi, T. Yasui, *Bull. Chem. Soc. Jpn.* **2001**, *74*, 2327.
- 6 T. Ama, K. Okamoto, T. Yonemura, H. Kawaguchi, A. Takeuchi, T. Yasui, *Chem. Lett.* **1997**, 1189.
- 7 DIRDIF94: P. T. Beurskens, G. Admiraal, G. Beurskens, W. P. Bosman, R. de Gelder, R. Israel, J. M. M. Smits, *The DIRDIF-94 Program System, Technical Report of Crystallography Laboratory*, University of Nijmegen, The Netherlands, **1994**.